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ABSTRACT

A three-dimensional inviscid flow {ield analysis for treating axisymmetric
configurations at angle of attack has been formulated and mechanized in the
form of a Fortran [V UNIVAC 1108 computer program. A timc—d\ipcndent
floating mesh technique is employed which involves use of a conditionally
stable, first-order finite difference representation of the governing equations.
Provisions arc included for treating an axisymmetric flare located on the
vehicle afterbody. Computations have been performed for sphere and
sphere-cone configurations as well as for a hemi-cylindrical flare in a
uniform free stream. A significant feature of the results is that the
three-dimensional modc of calculation does not appear to introduce unstable
behavior in cases which can be run successfully at zero angle of attack. The
applicable range and accuracy of the computer program are discussed with

respect to free stream and vehicle gecomelry parameters.
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SYMBOLS

Speed of sound

Matrix with elements Aij = BFiZBUj

Body surface, x = B(r)

Coordinate system base surface, x = C(r)
Damping term coefficients

Time step factor

Geometric factor, As /As

+1788,

Specific internal energy

Unit vectors in o BY directions, respectively

Nondimensional specific total energy, —
o8}
Distance between surfaces B and C measured in n-direction

Distance between surfaces W and C measured in n-direction

Shock surface, g(s, n, ¢, t}) = 0

. Nondimensional specific enthalpy, E/VOOZ

Transformation scale factors

Functions defined in Equation 2-3

Integer index, s = (k-1)As

Damping term factor

Free-stream Mach number

Vector functions of U defined in Equation 2-1
Shock surface unit normal vector

Nondimensional pressure, -—5——2-
p

@ "

Arbitrary flow property (Appendix D)
Vehicle nose radius

Coordinate system base surface radius of cul;'vature



Nondimensional time, "EVOO/RN

Conservation variable defined in Equation 2-1

Shock velocity

Velocity component normal to shock wave (Appendix B)

Nondimensional velocity components in «, B,Y directions,
respectively

L}

Nondimensional total velocity, —\7;-
Nondimensional velocity component normal to shock surface
Nondimensional velocity component tangent to shock surface
Shock surface, n = W(s, ¢, t)

Angle of attack

Angles measured between Nand s, n, and ¢ coordinate
axes, respectively

Ratio of specific heats, cp/c
Shock detachment distance at axis of body

Coordinate system reference surface angle measured from
body axis

Body surface angle measured from body axis

. Artificial viscosity coefficient

Po

Spatial coordinate given in Equation 3-1

Nondimensional density,

Conservation variable defined in Equation 3-1

Coordinate Systems
Cylindrical polar coordinates
Generalized curvilinear orthogonal coordinates
Cylindrical curvilinear coordinates

Shock layer transformation coordinates



Superscript

K Time index
Subscripts
4, m, n Sp‘atial indices for s, n, ¢ directions, respectively
o, B, Y Values in «, B,Y directions, respectively |
B Body surface value
© Free-stream condition
o) Condition ahead of shock {(Appendix B)
t Stagnation value

Conditiqns behind normal shock

Flare value
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Section 1

INTRODUCTION

During the past several years, a new class of time-dependent computational
techniques has been developed and applied to the solution of steady-state
fluid flow problems. These methods are largely based on physical and
majthernatical concepts originally derived in treating unsteady flow phe-
norlnena. Continuing improvements in computer technology have increased
the economic feasibility of performing the large-scale calculations associ-
ated with these methods. A brief review of developments that lead to the

present computational state of the art is given below.

Because of the difficulty involved in numerically solving the unsteady
equations of fluid mution ~grthepresencevianoviag -boundaries (shock waves)
across which flow properties are discontinuous, a technique was developed
by J.von Neumann in 1949 (Reference 1) wherein artificial dissipative terms
were explicitly introduced which had the effect of "'smearing out' the dis-
continuities., This eliminated the necessity for locating these surfaces in
space and time during the calculation to apply special boundary conditions

along them.

Following further mathematical development in the area of diésipative finite
difference schemes (See Reference 2 for a comprehensive d;is,;cussion of this
topic), many fluid flow problems were successfully attacked using this
approach. In practice, the method involves a fixed network éof’ mesh points
within which discrete discontinuities such as shock waves ‘appear as moving
disturbances covering several mesh points in width, In pérticular compu-
tations were performed at the Rand Corporation (Reference 3) and at the
Los Alamos Scientific Laboratory (LASL). Topics treated hy the latter
include various two-dimensional problems involving solutions of the Navier-

Stokes equations, for example, Reference 4. The continuin’g work at LASL



involves unique Eulerian (fixed mesh or cells) and Lagrangian (particle
tracing) approaches. Recently, Bohachevsky (Reference 5) has used a

{fixed mes}; method to compute the flow field about axisymmetric bodies at
angle of a!ttack. The results of this study emphasized the somewhat prohibi-
tive conx;")uting time requirements associated with highly damped, fixed mesh,

time-dependent techniques.

1

In 1959, ‘Godunov (Reference 6) introduced the floating mesh conce\ﬁ\)t for the
treatment of blunt bodies in a supersonic stream in which the shock is
treated aé a true discontinuity and the finite difference mesh is uniformly
distributed between the shock and the body. He used a sophisticated dif-
ferencing technique involving linearized simple wave relations and obtained

i

a steady-state flow field in asymptotic fashion. During the 'starting
prégess", artificial viscosity relations within the shock layer were used to
dan;p out the transient waves arising from the suddenly imposed supersonic
fre(;\stream. Subsequently, Babenko et al., (Reference 7) used a floating
mesh approach to compute the steady-state flow field about pointed cones at
anglé of attack, Moretti (Reference 8) has employed a similar technique to
treat blunted cones and ellipsoids at angle of attack using characteristic
relations at the shock and body in connection with a second-order finite
difference scheme similar to that developed by L.ax and Wendroff (Refer-
ence 9). Masson (Reference 10) has recently applied the Godunov method

to the computation of flow fields about planar and axisymmetric blunt bodies

in supersonic flow,

All of the preceding methods have, at least in part, attempted to describe

the asymptotic process in time so that a natural transition to steady state
occurs during the calculation. Crocco (Reference 11) has examined the time-
dependent approach and has emphasized the inherent computationali
advantages; for example, the governing unsteady differential equations are
hyperbolic in the subsonic and sonic regimes as well as in the supefsonic
regime. Thus, mixed flow two-point boundary value problems involving
singularities (e.g., blunt-body direct integral method) may be fornﬁulated

as singularity-free initial value problems, ZFurther, considering t%ime as a
purely iterative variable, the asymptotic approach to steady state may not

be related to an unsteady flow process found in nature, ]: '



The present study is concerned with the application of time-dependent finite
difference techniques to the solution of the steady-state, inviscid flow field
about an axisymmetric vehicle at angle of attack in a supersonic free stream,
Provisions have been included for treating a body flare with detached shock
wave (transonic flare). A floating mesh approach has been used to describe
accurately bow and flare shock waves as discrete surfaces across which
flow property discontinuities are specified by exact moving shock relations.
The pr'incipal objective of the study is to develop an operational computer
program capable of generating an accurate three-dimensional flow field
description given initial data consisting of vehicle geometry, free-stream
conditions, and angle of attack, Although the analytical formulation and the
selection of the finite difference analog of the governing equations are guided
by the results of linear stability theory, a significant degree of numerical
experimentation is involved because the present multidimensional problem

is highly nonlinear.






Section 2

ANALYTICAL DEVELOPMENT OF GOVERNING EQUATIONS

2,1 GOVERNING EQUATIONS IN CYLINDRICAL CURVILINEAR

COORDINATES

The equations describing the unsteady, inviscid, adiabatic flow of gas in

cylindrical curvilinear coordinates can be represented in the conservation-

law form (see Appendix A):

M P

®
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®

51z
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e
ot + Os + an + ¢’ +Q = 0
where
= p - pvs
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j

and, for a perfect gas,
o 1 2 2 2]
p = (\f,—l) {pE - 55 lov )™ + (ov )" + (pvgp) 1. 2-2)
Since p :,i)(U), the vector functions M, N, P, and Q can be expressed

entirely as functions of the consérvation variables U.

[

2.2 TRANSFORMATION TO SHOCK LAYER COORDINATES

A basic consideration involved in the choice of a coordinate system is that

a finite difference network can be cohveniently described which is uniformly
distributed between the shock and body. Té establish a shock layer coordi-
nate system which is not excessively distorted by the presence of an
extremely blunt nose or a sharp corner, an arbitrary reference surface C(r)
is established which intersects the axis of symmetry normally and serves as
the base for the curvilinear coordinate system (s, n, ¢)(Figure 2-1). f‘or a
smé)oth (continuous slope) blunt body, B(r) and C(r) can be required to 7
coir;cide for convenience. The finite difference network is distributed
betv}\ieen the shock wave W(s, ¢, t) and the body with &n = constant at a

given value of s, i.e., the shock layer is subdivided into an arbitrary

number of equally spaced strips.

A shock layer transformation, based on the preceding considerations, can

be defined by the relations (see Figure 2-2)

5 = s
R i ey
$ = ¢
t =t

where j = 0, 1, 2, ..., Swith S = number of shock layer strips. It fol-
lows that the body and shock wave are givenbyn = Oand® = 1, respec-
tively, in the transformed system. Performing the transformation, the

governing Equations 2-1 take the form

oT oM 5D i Y 5 = i
U, M | OB, B AU, oM, LGN, GBI, o [ o
ot s 3¢ dt on on -1 gn 9¢ on ; (2-3)
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Figure 2-1, Coordinate System Description
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Figure 2-2, Shock Layer Geometric Parameters




where

-1
G(S, Vh’d): t) = - o 2
" (F-1)
1 of oF of
H(s,‘n,d),t) = "F__—fgé + G(gg-— —a-—é->

The specification of explicit analytical expressionsv for the body and coordi-
nate systemvbase surfaces enables determination of f(s). Subsequently,
df/ds is obtained from

i

4’
ds

(1 + -f-ﬁ) tan (65 - 6) (2-4)

The temporal derivative 9F /3t can be expressed in terms of the shock
velocity and the spatial derivatives 9F/0s and 8F /3¢ (see Subsection 2. 3).
Evaluation of 0F/9s and 9F/9¢ requires the introduction of a finite difference
approximation for these partial deriwatives dnids &b cermestiont and s =

constant planes, respectively.
2.3 SPECIFICATION OF BOUNDARY CONDITIONS

2.3.1 Shock Surface

The Rankine-Hugoniot relations for a moving three-dimensional shock
surface (derived in Appendix B) are applied at the bow and flare shock waves,
The shock velocity Us(s,q;, t) serves as a control function during the asymp-
totic convergence process, US is measured in the direction of the nolrrnal

N to the shock surface at time t.

Referring to Figure 2-3,

2 _ 9F _
at(Fef) = 30 7 Us cos@n

f e



Figure 2-3. Shock Velocity Orientation

Defining the shock surface by g(s,n,¢,t) = 0

7

:

cosf = 'é-'g—i » G = ,Vgl

3

Letg=n- F(s,0,t) = 0,

Then
1/2
aw oY L 1 (_azy HJ__QF_)Z |
at = G 1 E)z 2 L2 (acb
R s

where (2-5)

r = r + Fcosb

s

2.3.2 Body Surface

The only rigorous condition which can be specified on the body surface during

: i
the time-dependent flow process is that the normal component of velocity



vanishes, This condition provides a relationship between the velocity com-

ponents v _ and v_ at the body (v¢ is tangent to the body):
B

v B = VSB tan(eB - 8) (2-6)

2.3.3 Convex Corner

Independent of the coordinate system used, the influence of a discontinuity in
body slope:’(convex corner) can only be approximately described with a finite
difference mesh unless auxiliary analytical relations are provided at the
corner. In the axisymmetric case, for example, it is possible to relate
upstream and downstream flow properties and their rates of change along the
body surface using exact inviscid equations (Reference 12). In a more
general approach, a description of flow properties both on and off the body
near a convex corner based on the analysis of Reference 13 has been adapted
(Reference 14) for use with an integralameithedsaladion olextremely blunt-
nosed, e.g., flat-faced, axisymmetric body flow fields., For the k
three-dimensional case, comparable analyses would be required which, if
developed, could introduce prohibitive complexity in asymmetric flow cal-
culations. In the present approach, therefore, the corner description pri-
marily involves enforcement of upstream and downstream body surface |
boundary conditions, '

o

2.3.4 Axis of Symmetry

!
i
i

Calculations at the body axis, which is common to all meridianal plénes,
require special treatment because of the singular behavior of certain‘_ terms
in the governing equations as r — 0. This behavior is purely a fun’c.ti/on of
the choice of coordinate system and persists for both symmetric (O'i: 0) and
asymmetric (¢ > 0) flow cases. A special form of these equations/ ‘\Ih’i‘liCh is
valid at the axis of symmetry has been derived and is presented in !‘
Appendix C. For the asymmetric flow case, the axis (given by r = ?) is a
tegular line in the flow field with no épplicable symmetry conditioxﬁs other

!
than those associated with the ¢= 0 and ¢ = II planes. The finite difference

relations at mesh points contained in the flow field plane of symmetry reflect

!
|
i
|

10



appropriate symmetric or antisymmetric functional behavior for each flow

property,

2.4 BODY FLARE ANALYSIS

A convenient geometrical scheme for describing the shock layer is to trans-
form it into a cylindrical region as in the'present analysis. The presence of
an axisymmetric body frustum or flare complicates the shock layer geometry
by introducing a second region bounded by the flare shock, the body, and an
arbitrary downstream station, In addition, a weak secondary shqck or
expansion wave may appear at intersection of the bow and flare shocks which
equalize the pressure and flow direction on either side of the slip 1in.e ema-

nating from the intersection,

A tractable approach to the two region problem involves a sequential conver-
gence procedure. Initially a single shock, floating mesh solution for the nose
and afterbody region can be obtained neglecting the presence of the flare. A
test of the flow conditions at the location corresponding to the baise of the
flare establishes whether the flare shock is attached or detached (transonic
flare). A flare and afterbody solution can then be carried out’to the next
flare location or to the base of the vehicle using the computer stored non-
uniform conditions ahead of the flare shock (see Appendix D). This approach
has the following advantages: (1) for a given nose-afterbody éplution, a
parametric series of frustrum calculations can be performed consecutively,
changing, for example, the frustum angle or location; (2) after a time-
dependent floating flare shock subroutine is developed, bodies with several

flares can be treated.

The procedure described above has been employed in the present study,
The flare solution is obtained using the previously developed governing
equations and a new coordinate system base surface CF(r) which intersects
the afterbody normally (Figure 2-4). The special form of the governing

equations is not required in the flare calculation as r>o, /

i

11



/7 Wi(S,9, 1)

Figure 2-4. Flare Coordinate System
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Section 3

FINITE DIFFERENCE REPRESENTATION OF GOVERNING EQUATIONS

3.1 GENERAL CONSIDERATIONS . '

The various numerical schemes for representation of time and space
derivatives in finite difference form can be broadly categorized (or a given
class of differential equations) as being either unconditionally or c’»\ondition»
ally stable in terms of a given time step At. Unconditionally stable methods
are implicit in that each time step requires an iteration involving values of

the dependent variables at both times t, and t, > to’ for example,

1
t,= ty + At. Because there are no stability limitations on the magnitude

1

of At, accuracy requirements and the time rate of change of boundary condi-
tions establish a practical limit on the size of the time step. Implicit meth-
ods are usually applied to unsteady flow problems that require an accurate

stepwise description of a time-dependent process.

Conditionally stable methods-are subject to the requirement that the magni-
tude of a given time step does not exceed a value expressed iﬁ terms of the
mesh geometry and the dependent variables involved in the prﬁoblem. For
example, At £ AX/(lu] + a) is the well-known von Neumann stability condi-
tion for a linear one-dimensional fluid flow problem where u = velocity and

a = sound speed.

The finite difference methods applied to the present study are in the condi-
tionally stable category. As the governing partial differential equations are
nonlinear, it is not possible to establish exact stability requirements on At.
In addition the multidimensional aspects of the problem preclude direct use
of existing mathematical results which are typically based upon one- 6r
two-dimensional analyses involving uniformly spaced, orthogonal finite dif-
ference networks, In spite of the idealizations employed, s/léability require-
ments based upon linear theory can serve as a useful guide in specifying

stable time step magnitudes during the computations.

13



A brief description of several conditionally stable finite difference schemes
of first- and second-order accuracy is presented below as applied, for sim-

|
plicity, to the one-dimensional vector equation.

2L + 'Fi(U) =0
& (3-1)

(See, for example, Reference 2 for a detailed treatment of these methods. )

3.2 LAX-WENDROFF SECOND-ORDER SCHEME

The Lax-Wendroff finite difference equations are basically derived from a

truncated Taylor's series int, i.e.,

5K L+ a8V At + (a20) (an)?
" (at)z (atZ)e 2 (3-2)

where the superscripts represent a time index and the subscripts a spatial

index, e.g.,

< K+1
) =UX + AX, t + At)
241 4 K

In general, the time derivatives are replaced by spatial derivatives through
use of the governing equations and associated boundary conditions. Defining
the matrix A(3) as the Jacobian of F with respect to U with elements

Aij = aFi'/BZSJ_., Equation 3-2 becomes

K 2 ‘

k+1 - Q-@__EKAt+~_3_< aF\ (at) . !

st = (3 )2 2 Aax)g > . - 3-3)
¥

Considering A to be a constant matrix, use of conventional difference quoti-

ents for the X-derivatives in Equation 3-3 yields !

2 2

I O N WA P N S LRI

1 = O 2 A B "8 2 Bax) (B - 28 50 (3-4)

Co

/
\. N
The conditional stability of the system of finite difference Equation 3-+4 has
!
been established. Specifically, the von Neumann condition has been!found to

be both necessary and sufficient for stability.

14



3.3 TWO-STEP LAX-WENDROFF SCHEME

The tv\{'o—step Lax-Wendroff procedure offers the advantage of second-order
accuracy through the application of two first-'-order‘ calculations for each time
step. 'In particular, the matrix A need not be evaluated during the

calculation.

For each point in the mesh, one initially obtains intermediate ‘data at
1

(Xf + EAX’ te ’Z_At) using the relation
1
K4z
I N Th K) AL g X
T2 (55 5y) - 2ax (Foar - Fy) (3-5)
f+i
Final values at (X, t, + At) are then calculated using
K+= K+=
ZSK+1 - BK __L_‘.\_:E F 2 _F 2 (3-6)
! P TAX\T L 1
7 -3

For the special case F(8) = AU, substitution of Equation 3-5 into
Equation 3-6 yields the second-oxder Lax-Wendroff relation Equation 3-4.
It should be noted that variations on the two-step Lax-Wendroff scheme have

been developed (see, for example, Reference 15).

3.4 LAX FIRST-ORDER SCHEME

A conditionally stable first order difference scheme introduced by Lax

(Reference 16) expresses Equation 3-1 in the form

AR § % K]*At<f< <) ,
e = 2 1% Y 8] aax (e T | (3-7)

[ L

Note that Equation 3-7 is almost identical to the intermediate relation used
in the two-step Lax~Wendroff method. The forward time diffe;rence in

Equation 3-7 can be rewritten as CL

K+ '3 2 K K _5qcK P
U . @) 15, 8y, ~25; Iz
(___—at = AT 2At 5 j (3-8)
2 - {aXx)

As the second term can be interpreted as the conventional finite difference
representation of a second derivative with respect to X, the coefficient of

this term, by analogy with a second-order viscous term, is ,'often referred to

B L
e

15



i

as an '"artificial viscosity' coefficient, p = (AX)_Z/ZA e In two dimensions,
the ""dissipative' term takes the form of a Laplacian in rectangular coordi-
nates. Te;ms appearing in this form will be referred to as damping terms
in the rem/ainder of the report.

[

Following Reference 5, a three-dimensional version of the first-order Lax

scheme has been used in the present study. The finite difference time and

space derivative operators are given below. \\\ '
a15)" B Y ST, K[k + K - 2k
a9t T At] g, m, n P2, m, n ‘(‘JZ+1,m,n bﬁ—l,m,n 2, m,
{, m, n L
K K - 20k sk
‘\ * Z_SL m+1,n+23£,m—l,n 4, m,n)cn+< £, m, ntl,
\ K _ K :
! ", m, n-1 2”!2, m, n) C¢” (3-9)
i
where
K41

- K
UI-H, mt1 il U(Sg +As, n_ +An, ¢n+A‘?)’ t" +At)

K=z, C¢ = 0 for axisymmetric case
K=2 forae>0

O Pl

/

td
The damping term factors Cs’ Cn’ and Cgy are equal either to unity or zero.
For a general field point Cs = Cn = C¢=1. At the network boundaries (shock,
body, axis of symmetry, and downstream exit plane), the C's are set in
accordance with appropriate boundary conditions. No geometric factors
involving mesh dimensions are introduced in the time derivative, ‘It has been
pointed out (Reference 5) that in an axisymmetric case, use of geometric
scale factors corresponding to those appearing in the definition of a Laplacian

in cylindrical coordinates did not alter the final results of the time-dependent,

‘

fixed-mesh calculations.

16
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The spatial derivatives are given in terms of the central difference operators:

Q_E_)K _ 1 K K. ~
(as f N T 2As lFi’“Pl,m,n - Fl—l,m,n , &s = constant
¢ K )
(9.};?.) — 1 FK N FK
N mon 2An 4, m+l, n 4, m-1,n
oF ¥ - L [ K K
(8 )f m. n - 2A¢ Fje, m, n+l B Ff, m, n-1

If Asis specified as a geometrically increasing function of s, a we\l\ hted

average finite difference relation is used for evaluating 8F/ds , e. g.,

ASI = 8, - 8, 4 7 ASO(D) , D = (ASE-H/ASﬁ)’ Aso = constant
1 (F) - F* +F P

(@E_)K . DZ 41, m, n ﬂ,in, n) 4, m,n " 4-1,m,n

asl,m,n ASI(1+D) |

At the boundaries, for a given space variable Xi’ one-sided difference opera-
tors are used if the function is odd in Xi (i. e., F(Xi) = -F (- Xi)) while a
zero value is assigned for the Xi- derivative if the function is even in

Xi (F(Xi) = F(-Xi))o For example, in the flow field plane of symmetry,

Vo Vi PoPos and E are even functions in ¢ while v is an odd function in ¢.

¢
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Section 4

COMPUTER PROGRAM DESCRIPTION .

The basic features of the Fortran IV, UNIVAC 1108 computer program which
provides a numerical solution of the governing finite difference equations

are briefly described in this section.
|

4.1 PROGRAM INPUTS

The inputs required to perform the forebody calculation include:

1, Free-stream Mach number, I\./lGO
2. Ratio of specific heats, Yy
~ 3., Angle of attack, o
4, Initial shock detachme®rGisrenscr wt 23is, gy
5. s-direction mesh interval factors, Asg,, D
6. Number of s-planes (£40)
7. Number of n-planes (£5)
‘8. Number of ¢-planes (£9)
The body geometry can be input by specifying either (1) x, rO; .9, R, f, Xg
Ths BB as arbitrary functions of s or (2) S one’ GC, and scylinder which

define a sphere-cone-cylinder (Figure 4-1la). For a flare calculation the
additional geometric information required is the preflare body angle and the
coordinates (xF T ) (Figure 4-1b), The number of s and n planes used in
the flare network can differ from those employed in the upstream forebody
calculation; however, the number of ¢-planes must remain constant.

2
A number of input flags are available which offer the option, following the

completion of a forebody calculation, of (1) stopping, (2) calllng in a new
case, or (3) initiating a flare calculation using nonuniform upstream shock
layer conditions. In addition, a flare calculation can be performed directly
using uniform free-stream conditions. Other input flags all"ow use of pre-
viously calculated flow field properties as initial values forja new case.

|
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Figure 4-1. Forebody and Flare Input Geometry Options
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4.2 SHOCK LAYER STARTING SOLUTION

To generate initial values of the flow properties at the network points, the
following procedure is followed. For a given body geometry, a modified
Newtonian solution is obtained at the body surface. A linear interpolation

is then made between the resulting surface values of flow properties and
free-stream flow properties which are assumed as initial postshock condi-
tions. For an asymmetric case, these data are repeated in each ¢-plane,

i.e., the initial data are always axisymmetric. The shock layer is initially
set at a constant thickness, ¢y = (F-f),, up to the point where eB< sin” l(Z/MOD).

Beyond this point, (F—f)f = (F—f)l + (24s,) /M to ensure that the'shock

-1
slope exceeds the free-stream Mach angle by a reasonable margin.

4,3 STABILITY CRITERION

Applying the conventional one-dimensional form of the stability condition

on At in the three coordinate directions, one obtains the requirement that

n !
1+—§>AS An rd¢

At £ C{mi , ,
min |VS\+a ‘vn\+a lv(p‘-koz

(4-1)

where 0 < C £1 is an input factor which is used when the linear stability
criterion fails. During the calculation, the minimum At in the network is

located, multiplied by C and assigned as the magnitude of the time step.

4,4 COMPUTATIONAL PROCEDURE

An idealized schematic of the forebody computational procedure is shown in
Figure 4-2. A similar procedure is followed for the flare calculation with

the addition of an interpolation subroutine for determining conditions immedi-
ately upstream of the portion of the flare shock wave contained within the fore-
body shock layer (see Appendix D for details). The special axis relatiéns,
which, for simplicity, are not explicitly identified in Figure 4-2, are

omitted in the flare calculation because ry is always greater/ than zero.

The structure of the program has been designed to facilitate modifications
of the numerical procedures employed. In addition, the program makes

efficient use of the computer core storage capacity to avoid time-consuming
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tape héndling operations. Although this requirement is a stringent one with

respelct to, for example, the number of network points which can be speci-
/ 5

fied, the flow about some practical configurations at incidence to a free

strdam can be adequately described (subject to the condition that the calcu-
!

lations are stable with increasing time).
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Section 5

NUMERICAL RESULTS

A series of test cases have been run to establish the operational capabilities
of the program. Before ‘procecdfmg to three-dimensional examples, sym-
metric flow cases were checked for consistency against both experimental

and theoretical results.

5.1 ACCURACY AND UNIQUENESS OF BLUNT NOSE CALCULATIONS

Using the program as a blunt-body method, shock layer data were obtained
for supersonic flow about a sphere at Mach numbers of approximately 3, 4,
and 5. The exact Mach numbers used (2. 996, 3.975, and 4.926) correspond
to the available experimental data. The calculated shock detachment distance

at the axis (Figure 5-1) and the surface pressure distributions (Figure 5-2)

1 { 1

TIME-DEPENDENT CALCULATION
FOURSTRIP, AO =1.5°, 0y o i = 54°

0.3

O] EXPERIMENT (REF. 17)

o|Z | \U\\U,_

0.1

Figure 5-1. Shock Detachment Distance--Sphere
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TIME-DEPENDENT CALCULATION

(© EXPERIMENT (REFERENCE 17)
FOUR STRIP, AS = 1.5°

24

4.926

Me, = 3.975

40 ‘

0
: G (DEG)

Figure 5-2. Surface Pressure Distribution — Sphere
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are in reasonable agreement with experimental results when a four strip,

As = 1.5°, mesh array is employed. For a given network of }Soints, no
sigf;ificant change in converged results was obtained when the initial location
of the bow shock was varied by a factor of two; this result is crucial because
it '!supports the uniqueness of the calculations. The principal difficulty
encountered during the sphere calculations was the inability to obtain valid,
cénverged results at higher Mach numbers. Insufficient dat\é} have been

obtained to establish the nature of this difficulty,

5.2 MESH SIZE DEPENDENCE

Unlike most blunt-body methods, the present time-dependent technique does
not automatically establish stagnation point flow property values{;as those
corresponding to passage through a normal shock wave followed by isentropic
compression to the body surface (assuming symmetric flow). Further it has
been generally noted that the rate of approach of flow property values to

their steady-staté limits is slowest near the body with surface density being
a particularly sensitive variable in this respect. An examination of the
behavior of the solution in the neighborhood of the stagnati'on point, therefore,

affords a critical test for establishing flow field accuracy.

The test case chosen was a sphere with a fixed free-stream Mach number

of 4. Referring to Figure5-3, a reduction of the As increment from 6° to 1. 5°
with the number of shock layer strips increasing from two to f(;ur for the
latter case results in acceptable stagnation values of pressure, density and
detachment distance. In contrast to the floating mesh results of Reference 10
(which uses a different conditionally stable finite difference scheme), use of
special axis relations appears to lead to less accurate resul?s in the present
program relative to results obtained by straddling the axis o_‘f symmetry with
the finite difference network. Unfortunately, for the asymmetric flow case

(¢ > 0), the latter technique is not applicable since necessary symmetry

conditions are lost,

The economic aspects of varying mesh.size are indicated in%Table 5-11in

terms of the computing time (Fortran IV, UNIVAC 1108) necessary to obtain

converged answers (the average compilation time for the program of 11 sec
|

is included).
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Figure 5-3. Effect of Mesh Dimensions on Sphere Stagnation Point Results
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Table 5-1
MESH SIZE VARIATION

No. of No. of Computing
As Strips Time Cycles (dF /dt) 4 | ' Time
1.5° 4 | 600 - 0. 0002 3 min, 57sec
3° 2 400 0.0004 1 min, 8 sec
6° 2 400 0.000009 49 sec

5.3: EMPIRICAL ASPECTS OF STABILITY CRITERION

A time step factor, denoted by C, has been previously identified in the

actual ~ C(At)linear

0<C=s1. Itwas found necessary in a large number of the cases described

definition of the stability condition on t, i.e., (At)

td

=
3

in this section to employ values =¥ Crremgiag Tirom 078 to 0.4 to effect a stable
computation leading to valid asymptotic results. The linear At precﬁctions
used in the program are based upon application of one-dimensional concepts;
therefore, it is likely that a more conservative estimate based on three-
dimensional theory could be established which could reduce the dependence

on empirical constants.

Certain characteristic behavior in the time varying flow field was noted as
being indicative of the onset of instability. In particular, the ai)pearance

of alternating signs of dF/dt leading to a corrugated shock éhape was an
easily detectable instability mode. It must be emphasized thafltkin some
cases, an attempt to force stable behavior through extreme r’geéluctio'n of

At (for example, use of C< 0.2) can lead to anomalous flow field results.
Because total energy E and to‘;al enthalpy, ht’ must approacfh’ éteady—state
values which are only a function of free stream conditions, these properties,

which are monitored throughout the field, were a useful measure of the

validity of the converged flow field data.

5.4 SPHERICALLY BLUNTED CONE COMPUTATIONS

———
———

The flow field about a blunted cone with a semi-apex angle of”24° was

sucgessfully calculated employing a two strip, As = 6° netwo"rk. The
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initial and final bow shock positions are shown in Figure 5-4. Use of a
constant A[s/ increment limited the overall length of the body to x/RN >3,
The re sult/s exhibit qualitatively corrcct trends but are not particularly
accurate since a coarse mesh was employed. The value of the coordinate
system bgse radius of curvature, R, at the sphere-cone jupction was sect
at both u)ﬁity and i‘infinify” (7010) corresponding, respectively, to either
the sphefe or cone values in order to estimate the effect of a _curviturc
discontinuity on the calculations. A 10% deviation in downstream shock
layer thickness was noted between the two cases. Use of a coordinate
sys’tem base surface with continuous slope and radius of curvature may
eliminate this perturbation.

i
A serious limitation in the operational range of the program was encoﬁ\ntercd
whén attempting to treat a hemisphere-cylinder. Flow properties, pafticu-
1a1‘fy pressure and density, on the afterbody surface displayed é consistent,
unstl‘ablc tendency to decrease rapidly during the time dependent process
and eventually attain negative values. This behavior was later noted for

several sphere-cone cases involving values of 6C< 20°, Decreasing As

3 //
//
a=0° L~ )‘
ZWO STRIP INITIAL-SHOCK
S=0.10472
4as POSITION \//
// FINAL-SHOCK
, . - POSITION
_ x~ é
..D.n____‘__.;._ //
T=1 S
7
,/
/,\ !
1 /j / <]
/ 1
1 0 1 2 .3

|
Figure 5-4. Time Dependent Calculation Blunted Cone (6 = 249)




through use of a special deck which eliminated ¢-plane storage in favor of

increased s-plane storage capacity did not correet this situation.

The variable As option which is intended to treat long afterbodies while
maintaining small mesh intervals in the nose region was tested on the 24°
blunted cone. A previous variable As scheme involving a doubling of the
step size at intervals along the body was found to he unstable. The present
scheme increases successive As steps by a geometric factor near unity,
e.g., D=1.05, A stable calculation was attained; however, a significant
perturbation in nose region results could be noted, e.g., the bo&z shock was
displaced outward (an examination of the literature on application\of time
dependent techniques to flow field problems indicates an emphasis on blunt

configurations with minimal afterbody lengths).

5.5 ANGLE-OF-ATTACK COMPUTATIONS

The initial attempt to utilize the three-dimensional capabilities of the
program involved a sphere calculation with the coerdinate system axis of
lsymmetry set at 6° incidence to the free stream. A reasonableicheck on

the program was established as the resulting flow field was approximately
symmetric about an axis parallel to the free streamn direction and the rotated

, da'ca»'corresponded to a conventional sphere solutiom. Small deviations from
an exact match of @ = 0° and rotated @ = 6° values could possibly be attributed
to perturbations arising from the asymmetry of damping terms as sociated

with the axis relations and the restriction to a maximum of 9 ¢-planes.

The previously described 24‘7"‘7 sphere-cone configuration was successfully
run at 6° angle of attack using 9 ¢-planes. Examimation of the circum-
ferential variation of shock layer thickness (Figure 5-5) at four stations
along the body indicates smooth, physically realistic trends from windward
(d=m) to leeward (¢ = 0) planes. No tendency towards unstable behavior as
a result of the three-dimensional nature of the calcwulations was noted. The
computing time for this case was approximately nine minutes which should
compare favorably with other three-dimensional techniques./
5.6 FLARE CALCULATIONS

The validity of the flare calculations was tested by computing a sequence

of hemi-cylindrical flare cases considering a uniform oncoming stream, a
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cylindrical forebody and varying flare radius. The resulting data should

be bounded by sphere results as r_, — 0 and two-dimensional cylinder

resx/;{lts as rp —~w. Examination ofFigure 5-6 indicates that correct trends
are exhibited when considering the variation of shock detachment distance
wit/jh T The rate of convergence of the flare case was less than a
comparable forebody case in that more time steps were required to attain

a given value of dF /dt. |

\ :
At the time of preparation of this report, the fully coupled forebody-flare

version of the program was nearing operational status.

5.7 CONVEX CORNERS

An initial attempt to compute a sphere-cone-cylinder case was unsuccessful.
\ A critical examination of the effect of the corner on the stability of the
. calculations for this case was complicated by the previously established

instability noted for afterbodies having small or zero slope.

T 1
Moo= 4 + TIME-DEPENDENTCAL%ZULATION .
v=1.4 Rng TWO-STRIP, Af = 1.5°, Oy o = 58.5
o
. " A ———  INVERSE BLUNT-BODY METHOD (REF 18)
0. S . et
’FL?RE —(— . EXPERIMENT
06 n ] (REF 18) 7]
; ~—(}—{ [REF 19)
2-D LIMIT {CYLINDER): 5 >0
FLARE
EO
R 0.4 +
Ng
0.2 !
;
\_— AXISYMMETRIC LIMIT (SPHERE): rg| apg =0
(REF 17) . ‘
0 I I | I L 1 11 | I N | | I I
0.1 2 4 681 2 L3 6810 2 4 68100 2 4f681,000 2 4 6 8
"FLARE ,
Rng é

Figure 5-6. Shock Detachment Distance--Hemicylindrical Flare in Unfform Stream
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Section 6

CONCLUSIONS

4

The principal objective of the present study has been to formulate and
mechanize a practical three-dimensional flow field method by taking advan-
tage of the recent advances in time-dependent computational techniques. To
arrive at an economically feasible computing method, attention has been
restricted to a floating mesh approach to reduce data storage requirements
associated with the flow field description. The summary of results presented
in the preceding section must be regarded in the nature of a progress report
which describes both firm accomplishments and preliminary trends. The
most encouraging observation is that the three-dimensional mode of calcu-
iation does not appear to introduce unstable behavior in cases which can be
fun successfully at zero angle of attack. In addition, the successful uniform

stream flare calculation is a unique result.

While the difficulties associated with body slope discontinuities were antici-
pated, the nature of the instability mechanism present in afterbody calcula-
tions is less obvious. An in-depth study of this particuiar aspect of the
problem using a modified numerical procedure such as the two-step Lax-
Wendroff method is recommended owing to the present limitations on the

operational range of the program.
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Appendix A

DERIVATION OF GOVERNING EQUATIONS IN GENERAL
ORTHOGONAL CURVILINEAR COORDINATES

The equations expressing conservation of mass, momentum, and energy for

the unsteady motion of an inviscid, nonheat conducting fluid are given below
in Eulerian form. . \

(continuity) §§+ VeV o= 0 (A-1)
0% v\ = 1
(momentum) ot + v > ) Vx(VxV)+pVp =0 (A-2)
9E | T Py 9p _ -
(energy) 5 + V- V(E+D) fl s =0 (A-3)

where, denoting dimensional quantities with a bar,

p = £ density
Peo
p = —E'T = pressure
PV e
v .
V = o— = total velocity
VCO
E === specific total energy
v
<0

The energy equation for unsteady adiabatic flow may also be expressed in

terms of the specific total enthalpy, ht’ of the fluid:
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h, = htg VE o= E+ R
since :

h = e+t -g— )
e = specific internal energy and

E = e+
i
i

For an adiai:)atic process involving a perfect gas (i.e., p = pRT;

c ¢, T constant),

. Y p
h—Y—lp’

therefore,

E = v? | (A-4)

oY=l

o to
.+.
o—

Altﬁougb the present study is restricted to consideration of a perfect gas,
the extension of the analysis to treat a gas in thermodynamic equilibrium

is straightforward and primarily involves the introduction of an empirical
description of the required thermodynamic properties. In addition, certain
explicit relationships, valid for the perfect gas case, will become implicit
thus leading to iterative calculations with an attendant increase in comi)uting
!

time. f

i

|
The governing equations will now be written in general curvilinear, orthogonal
by

coordinates (@, B, Y) where o

2 2 2 2 2 2 2
ds = h do) " 4+ h d + h dy
(ds) a( ) B(@) Y( )

and
V=v T +ve +v e
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The basic operators required are given by

1
H — a a
NV = T T T 5= (hh h h 9.
/V A% ha,hph‘{ {aa( 6 _Yva)+ 53( v Vﬁ)'i' . (hahﬁvY)}
/
’ 1 8V - 1 oV 1 v, I—»
YV = — =—%¢ + +— =—%¢ +:+— =mv €, , V = |V
ha/ 9, @ h[3 o P hY aY Yy
vxV = §€a + 'rfe'ﬁ + L—e'y ,
1 12 - 8
¢ = s {ap (h,v.) (hﬁvﬁ)]
_ 1 [o= 9
T~ hn |5y (hozva) da/(hyvy)]
Y o | ‘
1 [ d
t = Z=(h, v, )~ —(h v )}
hahﬁ t‘aa B B p o o
(vxV) xV = (vyn - Vﬁé)ga + (vag - vyg)'é’ﬁ + (vﬁg - wv'a/'q)'éf.Y

Application of these operators to Equations A-1, A-2, and A-3 yields

Continuity:
J 9 e ;
h h h h h + h h = = -
By at sl B yPY,) T ap by apvp” BY,(hahBPVY)‘ 0 (A-5)
Momentum

o direction:

ov 2
e 1 0 [V~ - L1 9p
5t " h_ da <2>+ VM Vet PR e T O (A-6)
o o
p direction:
ov 2 '
A _@_ _Y_ - 2 1ap
.ﬁ g
Y direction:
av 2 i '
Yy, L2 (v - Lo loap _



Energy:

IE
at

«

v
%(E+§)+H§§§ (E+—S—)+h—Y §—<E+‘g->- f—zg{ =0 (A-9)

+

Q';f‘lQ<
<

<

The governing equations will now be written in conservation-law form, i.e.,

QJ‘QJ
<+
+
212
+
fablien]
TﬂZl
+
|
+
0O
1
o

where U can represent mass, components of momentum in the coordinate
directions, or energy. The momentum and energy equations assume this
form when properly combined with the continuity equation. For example,
the operation ha/hﬁhvp x (o - momentum equation) + v, ¥ (continuity
equation) yields the expression describing conservation of the & - component
of momentum. Following a similar procedure for the remaining equations,

U, _1\71, N, 5, and Q are given by

v 2‘+ v
pv,, PVy p pvﬁ o
— v — - 2
U =h h h , M=h h , N=h h v +
o By PV Byl PYa'p v P TP
‘v
va pvavY po v
p' P
E+2 E+P2
-pE | ] PV, ( +-p{ vap ( p)
PVY
PYyVy
P = thB PYyVg ,
2 /
Pvy TP
Py B+ 2
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ohy ohy, > Bhﬁ 5 E&

PV (hYVB ap + hBVy oY ) - hY (pvﬁ + p) oo - hf} (pVY + p) o

. dhg 8hp) 2. ) dhy Sh,,
Q = pvﬁ (havy 9y *+ h\(Va Y ) - ha(va + p/ L hy(pva + p) 9

Q@

?’.}_ll ' Shy 2 ohy 2 Obg
PVy hﬁva 3¢ T hdvﬁ ap | - h{?) pvy +-p) 8y - h, PV +p 9y
0

| L
i : o

H
i

For a rectangular Cartesian coordinate system {x, Y, z}, the transformation
scale factors h,, hg, and hy become unity and Q = 0. The present study
considers a three-dimensional orthogonal curvilinear coordinate system

{s, n, ¢} where s and n are coordinates along and normal to, respectively,

an axisymmetric surface described, for convenience, in cylindrical polar
coordinates {x, T, cp} “he scivcraferentinlangle, $, is measured in a plane
normal to the x-axis (see Figure A-1). The relationship between the {s, n, ¢}

and {x, r, ¢} systems is given by

x = xo(s) - n sin6(s) (a) .
T = ro(s) + n cosH (s) (b} ' ' } | (A-10)
o = ¢ (c) ’

where 0 is the angle between the x~axis and a tangent to the re'ference surface

S lying in a circumferential plane defined by ¢ = constant.
)
The transformation scale factors for the curvilinear system become

[
[

n 9o ! i
ha:hs 1+—I*{,R:R(s):--é; o

h, = h =1 , (A-11)

f
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Figure A-1. s, n, ¢ Curvilinear Coordinate System

Evaluation of Q(s, n, ¢) requirecs determination of the partial derivatives of

the transformation scalec factors with respect to the coordinates, i.e.,

determination of the matrix operator given by

9h, Ohgy ohg .
da 9B oy i

(W%
Q
wn
o[~
(]

sin 6 (1 4 %) cos B 0
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Appendix B
DEVELOPMENT OF MOVING BOW AND FLARE SHOCK RELATIONS

The Rankine-Hugoniot shock relations will be derived in a form \suitable for
describing flow properties behind a moving three-dimensional shock surface.

~ As before, velocities are normalized by Vs density by p_, and pl\\essure

by p,Vy 2. This choice of nondimensionalization does not introduce constants

into the equations, thus the equations retain their original form.

Initially, the shock geometry and the total velocity vector immediately
upstream of the shock must be expressed in terms of the previously defined

{s, n, q;l coordinate system.

B.1 SHOCK GEOMETRY I

Define the shock surface by the relation g(s, n, ¢é; t) = 0. The normal to

the surface is, therefore, given by

(l+£> ds s on n

The unit normal becomes (Figure B-1)

N o= V8 _ Py = Y -
N = c - cosﬁs es+cosﬁnen+ cos ﬁ¢e¢ (B-1)
where
1
1 og 2 ?_g_z 1 (og 212
G oz 55) + (B8) = (%)
(l+'R—) n T 8¢

B.2 UPSTREAM VELOCITY VECTOR

In order to resolve the total velocity vector immediately upstream of the bow

or flare shock wave into components normal and tangential to the shock

45



> 0
gi{S.n,v:t) =0

e Y

Figure B-1. Orientation of Normal to Shock Surface

surface, it is convenient to express the velocity vector in is, n, d>} coordinates,

coordinates, i.e.,

V = v e +v —én+v'—€ +(B-2)

When treating the segment of the flare shock lying within the forebody shock

layer, the nondimensional upstream components Ve oo Voo and v¢ arfe obtained .

o !
through interpolation of data yielded by the converggd foxgebody calculation.
For the bow shock or portion of the flare shock beyond the bow—flarée_‘,ishock

intersection point, free-stream conditions prevail; therefore, one obtains
P

N 3 [
vy T Vg = cos @cos O + sin o sin 6 cos ¢ o
o 0 /
vy =V, = -cosa sin B8+ sin o cos 6 cos ¢ Y (B-3)
o © :
|
V¢ = v¢ = -sin o sin & /
o
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The aﬁgle of attack, o, is measured between the free-stream velocity vector
and the axis of symmetry of the vehicle. Because the present study is
restricted to consideration of an axisymmetric vehicle at incidence, the
flow field has a single plane of symmetry defined by the x-axis and the free-

stream velocity vector.

The normal component of the upstream velocity is given by

: - v.N¥ = L 1 og 9g , 1 og -
!{VNO = V-N = G .z Ve as+vn 8n+ rv¢ Evy (B-4)
, ( R) (o] o o

As the tangential component, VTO, is conserved across the shock wave, VN s
Por Py and the shock velocity Ugcan be introduced into the moving normal ©
shock relations to determine postshock flow properties. Referring to

Figure B-2, conservation of mass, normal momentum and energy across

the shock are expressed by

Poly = PN Uy - (B-5)
2 u 2 _
p0+ pO uo - PN+ pN N ‘, (B 6)
Y p Y p ' i
—— e b2 N, 1, 2 (B-T)
Y-1 Py 2 o Y-1 PN 2 N ’

Use of Equation B-7 restricts the remainder of the analysis to consideration

of a perfect gas. /

i

Introducing Equations B~5 and B-7 into Equation B-6 yields -

_ 2Y Py 2 “i‘?
N T T (YD) p tu ) i
) o o ° :

or, using u = VNO - US and Up = VN - US, /

2V P, 5
V., = - —+(V, -Ug”| - V.. +2U (B-8)
N (VNo U (Y + 1) [po N N,

47



L

Po P

Po Pn

Figure B-2. Transformation Relations Between Moving and Stationary Shock Waves

Solving for the remaining postshock properties

VN - US
o]
Py = P\ (B-9)
N O VN US . /
PN T Pot P (Vg mUs) (Vg = V) (B-10)

(¢} o

An expression for Us (pN; Py Py V., ) can be obtained through use of

N
o]
Equations B-8 and B-9:
1 | |
. k(p /p,.) 2 2y :
s = - + Vv , ko= (B-11)
(p/pp) ~ k+1 N Yl
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For uniform free-stream conditions ahead of the shock, Equations B-8

through B~11 become

2Y
1
- - U] - -
Vy = RN E I 5+ (VNco Ug) Vit 2Us. (B-12)
o] [¢4]
V.. -U ' |
. Ny s : -
1 .
= + (Vo = UMV, = V.) (B-14)
.pN YMCOZ Noo s Noo N
. 1
2 2
- 2/ Mg -
Us = \ONF /o -ty -1 | F Vg (B-15)

Finally, the components of velocity behind the shock are given by

v, T Vg + (VN - VN ) cos BS ‘ | (B-16)
o o
v.o= v, + (VN ~ VN ) cos P n (B-17)
' o o /
Ve = Vd)o (Vg - VNO) cos 'ﬁq? (B-18)
where_
1 og :
cos p = —— =2 (B-19)
5 G+ %) ds | :
B - .
cos ﬁn = G 3 _, _ (B-20)
/ A
. 1 oz -2
cos ﬁ¢ = Gr % (B-21)

The description of postshock flow properties in terms of shock geometry,

velocity, and upstream conditions is now complete.



Shock Relations at the Axis:

Define the shock surface by

!
|

gls, n,4>,,'t) :n- F(s,¢,t) = 0 (B-22)
Then
cos f3 E L (— Q—E)
s P ds
G(1+R)
!
cOs ﬁn: - G
cos B LI )
¢ Gr od
1/2
2 2
i 1 oF 1 o L
G = 2(85) +1+—2—(~é-¢—) ,1S—rO+Fcoso
¥ Y
(] %"’R—) s

As rs——>0, F—»FO and 9F/3¢—0

Since F is a regular function in the neighborhood of s =0

Fa _a__[_@_E;] o for
lim 0¢ _ lim 9s LO® M EE o (B-23)
e Tl E\ T, Foy -
s—0 S s—0 51n8(1+R) (1+~RT-) |
o J
In the ¢ - 0 plane, E%)[%s{t = 0 therefore, the geometric shock relations
reduce to o i |
2 -
_(af) 5 1/ I
cos B = .___QE__Q___, GO= L 2_’()}2 + 1 . ;
> Fo Fo ds o e
-9 i
GO 1+ R 1+ R , /,
AN O O
! |
cos B = —
n Go
cos [34) = 0 (Note that 'Bs = /2 -B, in this case.)

|

)
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Appendix C

),/ DERIVATION OF SPECIAL FORM OF GOVERNING EQUATIONS
"VALID AT THE AXIS OF SYMMETRY

The vehicle axis of symmetry which coincides with the x—axis\ié a regular

line of the flow field and a singular line of the (s, n, ¢)-coordinate system.
A limiting form of the governing equations must therefore be derived which
does not display singular behavior as r—0. The conservation-law form of

the equations was previously given by Equation 2-1 as ?:\

AN
ot os an

¥
2

or
.é@{[ru +2) U] + 2 MU)] + [r(l +2) N(U)

3 n .

2|0 +R PO + o) = 0 | (C-1)

i
i

D‘ifferentiating Equation C-1 with respect to s and taking the limit as

r — 0, one obtains

Blaogo] ¢ 2B &fnain] o+ 2] 4
|
|
b @@ el L e
O

A
i

A conventional application of I.'Hospital's rule was not possible in obtaining

this limiting form because v, at the axis does not vanish in thg asymmetric

case.
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Near s = 0, R = Ro = constant (hemispherical coordinate system reference

surface), therefore, (aR/as)O = 0. In addition, ats = 0

v = v COS(p
s SO
v - sing
where Vg (s, n) is the value of Vg in the plane ¢ = 0 (vS = 0 for o = 0).
o ‘ o

For convenience, the calculations are performed in the ¢ = 0 plane. Dropjping

the ¢-momentum equation because (v /E)’c)S:0 :O; Equation C-2 reduces to

¢

5 0 BMO 3 - 5 [8P0
(C-3)
where ! ‘}
o 1 an i [~ 1
p s ‘ PVn
v 2 + v Vv
PV PVg P PV, Ve
U, = v ’ Mo - v v ’ No - 2 ’
© P n PVg n pvn + p ,
pE pv_(E + p/p)
i | s T pv (E +p/p)
PO = v¢ UO
and
PV,
2pv v. - R —§—-(pv + p)
S 0 0s P /
1 2 2
Q0 - Ti; plvy - vg ) -p
PV, (E + pl/p)
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The shock layer transformation (Subsection 2. 2) requires use of the follow-

ing differential operators:

_@.:.Q_-FG.QE.Q. G = - n-f

8 . 9 2 SR S 4 (?_E 8f)
75 - o T Hag ; He w55 t G55 - 5
o . _1 o

‘9n = F-f o1

/

e 9 3F B

3 - 5 T S35 W

The additional second-order differential operator required for the axis

equations is given by

At s = 0, since

[aF/a¢]O = [a/08(3F /0¢)] = o,

2(5], - | 2l] - &l ok«

Applying the transformation relations at the axis, Equation C-~3 becomes
|

jo¥)
Sk
preme———
s
[S——
(RO —
(@]

/ o

i
i

n {BUO oF U, } oM, .~1 ‘: ‘9 n
g e ! Go('gr)o 3 B R v ol [“ *“‘"’No]

.

i
\ am_ (Vs s 8U_ U
Felomm *\er T T /Yo \mE T T Tm fVs, TR0
g

(C-4)

Evaluation of the finite difference analog of Equation C-4 is performed in

upper half of the plane of symmetry (¢ = 0).
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/ Appendix D
DETERMINATION OF UPSTREAM FLARE SHOCK CONDITIONS

3

WL

The nonuniform conditions immediately upstream of the movi}lg flare shock
must be determined for each time step during the calculation. A set of logical
geofnetric tests are applied to establish the location of a given flare shock
point relative to the converged forebody shock layer network., Flare shock
points lying above the bow shock are treated directly using free-stream
conditions. The remaining points are located within a given netvs)ork element,
for example, the quadrilateral I-II-III-IV shown in Figure D-1, An inter-
polation procedure is then applied to determine values of the forebody shock
layer properties at the flare shock point in question. The interpolation scheme

used in the present analysis is described in detail below,

A set of relations can be derived which transform an arbitrary quadrilateral

in the (x, r) plane into a unit square in the (u, v) plane (Figure D-2). Letting

H

x=—au+b v+c uv +d

; x b'q x pe

r=au+b v+c uv +d :;/
T T T r o

the coefficients can be evaluated in terms of the coordinates of four arbitrary

points in the (x, r) plane which define the quadrilateral in question

22 T *10 " %0 dr = Tio " Too }/
Py = *o1 " %00 b =Tg1 - Too ‘

Cx T *11 t*go (Xio o) ey =Ty trgg - (ryg +;01)
dx = %00 dr :rOO
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\MOVING

FLARE SHOCK
CONVERGED FOREBODY
SHOCK LAYER NETWORK

BOW SHOCK

o
[

< 2%

Figure D-1. Representative Forebody and Flare Shock Layer Networks

v A }
0,1) ¢ (1,1)
v .
* {u,v)
1 ]
> ¢ >
x 4] (1,0} u

T |

Figure D-2. Geometric Weighting Factor Transformation
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Becauge the points must form a closed figure, they must be identified in

cyclic fashion, e.g., points (XOO, ) and (x rll) cannot form a side of

00 11’

the quédrilate ral,

Solving for u and v in terms of a point (x, r) contained within the quadrilateral

r-bv-d
by T
u =

+c v
ay T
where

' 1/2
| 2
/ - -
v o= Bz [BZA4ACJ (sign chosen such that 0 s v £ 1)

and:

B = r¢c -x%x¢c +db -ab +cd -cd
e r r x X r r x x T

C=d(r-d)-dx-d)

Using the geometric weighting factors u and v corresponding to a given point
(x, r)in the guadrilateral, any flow property, q, can be evaluated at (x, r)

using the relation

q = au +bv +cuv +d

where
2 = 919 " 490
b = g5 -qqg

¢ = qpp tago - (a9 tagy)
900

andqij = q(xij’ rij)
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